Зачем в книге об энергии понадобился рассказ об Ахиллесе и тем более о черепахе — существе медлительном и косном?

Чтобы ответить на этот вопрос, вернемся к разделу «Кто выиграл?», где мы подсчитывали количество способов, которыми может быть реализовано какое-либо заданное состояние, или, как мы назвали эту величину, статистический вес. Рассуждали мы так. Пусть в объеме имеется десять молекул, то бишь шариков, и каждая из них может иметь одну из десяти различных возможных величин энергии.

В том, что мы выбрали десять, а не какое-то другое число молекул, нет ничего неправомерного. Законы, которые мы сейчас изучаем, должны быть справедливыми для любого количества вещества, в том числе и для десяти молекул.

Но почему каждая из молекул может иметь одну только из десяти различных величин энергии? Если энергия всех молекул равна, скажем, 10 единицам, то ясно, что энергия любой молекулы в этом объеме не может превышать 10 единиц. Это непреложный факт, мы однажды договорились в основу любых рассуждений закладывать несомненность закона сохранения энергии. Дальше давайте рассуждать так. Сколько различных величин энергии может иметь каждая молекула? Делим интервал в 10 единиц энергии пополам и считаем, что одна молекула может иметь энергию либо 10, либо 5 единиц. Согласны, что это слишком мало значений. Делим половинку еще раз пополам и получаем для возможных значений энергии молекулы величины 2,5; 5; 7,5 и 10. Опять мало? Снова делим пополам каждую четвертушку. Вы уже поняли, какая опасность подстерегает нас на этом пути? Если продолжить деление пополам так же, как это делал Зенон со своей черепахой, то получится, что количество значений энергии, которые может принимать одна молекула, равно бесконечности. Но если так даже в простейшей системе, состоящей не из десяти, а из двух молекул, количество способов, которыми может быть реализовано некоторое заданное состояние, равно бесконечности. Бесконечности равен статистический вес. Бесконечности равна энтропия.

Но если независимо от величины энергии энтропия равна бесконечности — ведь любой интервал можно делить пополам до бесконечности, — то это значит, что такой величины просто не существует. А может быть, нам и не надо никакой энтропии? Может быть, это понятие выдумано лишь для затемнения сути простых вещей?