Неопределенность величины энергии не может быть больше самой величины энергии. Перефразируем это утвер¬ждение следующим образом. Объем, занимаемый ма¬териальным объектом, помноженный на давление, оказываемое этим объектом на стенки сосуда, в который он заключен, и поделенный на величину энергии объекта, равен единице.
Представьте себе, что ваш объект — идеальная молекула. Для нее справедливо все сказанное. Теперь представьте что в том же объеме, о котором идет речь, содержится не одна, а много молекул. Ясно, что давление, оказываемое одной молекулой, будучи помноженным на общее число молекул, даст их полное давление, а энергия одной молекулы, будучи помноженной на общее число молекул, даст их полную энергию.
Помножив и разделив полученное нами соотношение на общее число молекул, вы убедитесь в том, что объем, занимаемый идеальным газом, помноженный на давление этого газа и поделенный на его внутреннюю энергию, есть единица. На деле все сложнее. Кинетическая энергия молекул не ограничивается той энергией, которая проявляется при взаимодействии со стенками сосуда. Молекулы обладают, к примеру, кинетической энергией вращения вокруг собственной оси. В зависимости от различных обстоятельств в нашем соотношении могут появиться учитывающие их коэффициенты.
Но это простые коэффициенты, например три вторых или пять вторых. Смысл их становится ясным, если рассмотреть каждое движение по отдельности. А в целом наше соотношение между объемом идеального газа, его давлением и энергией представляет собой просто иную форму записи соотношения неопределенностей Гейзенберга.
Приблизились ли мы к пониманию сущности газовых законов? Конечно, приблизились. Потому что теперь мы выводим их из гораздо более общих законов, справедливых не только для идеального газа, а для всех без исключения материальных объектов. Но как перекинуть мостик между выведенным нами соотношением и законом Клапейрона? Сделать это удастся не сразу, а пока отвлечемся немного в сторону.