Сначала попробуем восстановить в памяти ход рассуждений, которые проводятся для обоснования первого и второго начал термодинамики. Первое начало мы приняли безусловно. Что касается второго, то рассуждение о нем каждый раз начинается с предположения, что все частицы, участвующие в процессе, совершенно одинаковы, неразличимы, как зайцы, и энергия между ними распределяется равномерно. А если на самом деле это не так, то рассуждения, приводящие к выражению второго начала термодинамики, окажутся неверными. О том же свидетельствует и опыт. Например, при хорошо известном процессе кристаллизации молекулы стройными рядами располагаются в заранее предназначенных для них местах и ясно, что процесс кристаллизации сопровождается уменьшением энтропии. Правда, кристаллизация, как правило, происходит при охлаждении, т. е. при уменьшении количества тепловой энергии. Но какие-то основания для того, чтобы усомниться во всеобщей значимости второго начала термодинамики, у нас появляются.
Или, скажем, такой вопрос: чему равна энтропия одной молекулы? Если считать, как мы это делали раньше, молекулу однородным шариком, не имеющим внутренней структуры, то любое ее состояние может быть реализовано одним-единственным способом и, следовательно, энтропия молекулы равна нулю. Так что же, второе начало термодинамики, или, даже проще, понятие энтропии, существует в мире вещей, состоящих из большого числа частиц, и не существует для самих этих частиц?
На самом деле это не так. Не только молекулы, но и элементарные частицы — электроны, протоны, нейтроны — подчиняются соотношению неопределенностей, и любое их состояние может осуществиться, вообще говоря, несколькими способами. Но согласитесь, что здесь уже нет столь простого и ясного обоснования необходимости возрастания энтропии, как для случая, когда все зайцы, то бишь молекулы, одинаковы. Поэтому пока ограничимся утверждением, что второе начало термодинамики, безусловно, справедливо в мире вещей, состоящих из одинаковых, неразличимых частиц. И не станем пророчить гибель миру, который мы познали далеко не до конца.
Третий важный вывод состоит в следующем. Существуют как бы два различных мира. Один — мир реальных вещей, таких, как электроны, протоны, нейтроны, атомные ядра, молекулы. Каждый такой объект обладает некоторым запасом энергии, некоторой скоростью, а вернее, количеством движения, которые можно определить с точностью до соотношения неопределенностей. Современная техника экспериментов не дает нам возможности проследить все события, происходящие с отдельной молекулой, но современный уровень знаний в большинстве случаев позволяет нам описать эти события.
Второй мир — это мир больших вещей: пятаков, зайцев, автомобилей. Мы наивно полагаем, что знаем об этих вещах многое, но на самом деле не можем даже разобраться, тот это пятак или другой. Важнее всего то, что величины, с помощью которых описывается поведение больших вещей,— это, как правило, средние величины. Например, скорость автомобиля — средняя скорость поступательного движения всех его молекул. Что самое замечательное? Скорость автомобиля — это мысленная величина; из всех частиц, составляющих автомобиль, нет ни одной, скорость которой в точности равнялась бы скорости автомобиля. То же самое справедливо для давления, температуры и других термодинамических величин. Вся классическая физика — это система соотношений между мысленными величинами. Ну а современная квантовая физика?